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NTM simulation requires MHD closure relations with
long-mean free path effects in localized
3–dimensional regions (magnetic islands)

magnetic
island chain

ORNL/PPPL LDRD ORNL/PPPL LDRD terascale/multiscale terascale/multiscale MHD projectMHD project
 Improved efficiency of M3D (extended MHD) and DELTA5DImproved efficiency of M3D (extended MHD) and DELTA5D

(neoclassical transport in 3D systems)(neoclassical transport in 3D systems)
 Cray X1E, Cray XT3 NLCF systemsCray X1E, Cray XT3 NLCF systems

 Development of particle-based closure relationsDevelopment of particle-based closure relations
 Island regions analogous to Island regions analogous to ““stellarator within a tokamakstellarator within a tokamak””

 K. C. K. C. ShaingShaing, Phys. Plasmas , Phys. Plasmas 1111, 625 (2004);, 625 (2004);
1010, 4728 (2003), , 4728 (2003), 99; 3470 (2002); 3470 (2002)

 3D3D  variation of |B|variation of |B|  significantly modifysignificantly modify  local ripple, cross-local ripple, cross-
field transport,field transport,  local bootstrap current, flow dampinglocal bootstrap current, flow damping

 Merging of extended MHD with neoclassicalMerging of extended MHD with neoclassical
particle closureparticle closure
 New data compression, noise reduction techniquesNew data compression, noise reduction techniques

developed based on principal orthogonaldeveloped based on principal orthogonal
decomposition/SVD methodsdecomposition/SVD methods

 Applicable bothApplicable both to data from MHD -> particles to data from MHD -> particles  andand
particles-> MHDparticles-> MHD



Neoclassical transport particle closures
introduce new challenges:
 Collisions introduceCollisions introduce  new timescalesnew timescales

 lengthy evolution to steady state, especially at lowlengthy evolution to steady state, especially at low
collisionalitiescollisionalities

 Time-averaging needed to remove noise introduced byTime-averaging needed to remove noise introduced by
LangevLangevin in collision operatorcollision operator

 New New δδf partitioningf partitioning
 Want to avoid calculating quantities (flows, macroscopicWant to avoid calculating quantities (flows, macroscopic

gradients) that are already evolved by the MHD modelgradients) that are already evolved by the MHD model
 New data compression/smoothing methodsNew data compression/smoothing methods

 Interpolated M3D data noisy, not local to each processorInterpolated M3D data noisy, not local to each processor
 Particle dataParticle data  noisy, scattered overnoisy, scattered over  many processorsmany processors
 Need to package data for heterogeneous systemsNeed to package data for heterogeneous systems



Our computational method for NTM
closures includes three components:

 M3D to DELTA5DM3D to DELTA5D  couplingcoupling
   data compression (3D SVD method)data compression (3D SVD method)
  noise reduction, smoothing noise reduction, smoothing
  particles assigned to processors particles assigned to processors

 ParticleParticle  closure relationclosure relation
   new new δδf methodf method
   preserves fluid flow velocities from M3Dpreserves fluid flow velocities from M3D
   calculates viscositiescalculates viscosities

 DELTA5D to M3D couplingDELTA5D to M3D coupling
   data compressiondata compression
   noise reduction, smoothing (3D SVD method)noise reduction, smoothing (3D SVD method)



MHD to particle coupling
 Need forNeed for  following particles multiple stepsfollowing particles multiple steps

between MHD stepsbetween MHD steps
 Physics reason: collisional evolutionPhysics reason: collisional evolution
 Computational reason: noise reduction, filteringComputational reason: noise reduction, filtering

 Data compressionData compression
 Improved scatter operationsImproved scatter operations
 Assign particles to processors or regionsAssign particles to processors or regions

 Discretization Discretization error smoothing in MHD code dataerror smoothing in MHD code data
 Performance issuesPerformance issues

 Cache pagingCache paging



SVD data compression method
 SVD (Singular Value Decomposition)SVD (Singular Value Decomposition)
 POD (Principal Orthogonal Decomposition)POD (Principal Orthogonal Decomposition)

 Extracts Extracts ““dominant featuresdominant features”” and coherent structures and coherent structures
 Compresses information into aCompresses information into a  few low order weights andfew low order weights and

orthonormal eigenfunctionsorthonormal eigenfunctions
 2D data - standard method2D data - standard method

 3D data3D data
 Generalized low rank approximation (GLRA)Generalized low rank approximation (GLRA)
 Stacking (folding) methodsStacking (folding) methods
 2D SVD + Fourier decomposition in toroidal angle2D SVD + Fourier decomposition in toroidal angle

Aij = wkuk (xi )vk (yj )
k=1

NJ

! !!!!!data compression ratio = Rc =
NINJ

r(NI + NJ +1)

r =  # of terms in k summation



High performance + small memory footprint
SVD* fits of magnetic/electric field data have
been developed

Strategy: combine 2-D SVDStrategy: combine 2-D SVD** fit fit  (R,Z) with(R,Z) with
1-D Fourier series (1-D Fourier series (φφ))

N x N matrix λ-rank approximation

*SVD: Singular value decomposition
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SVD data compression method
for three-dimensional data

 GLRA (Generalized Low Rank Approximation) methodGLRA (Generalized Low Rank Approximation) method
recently developedrecently developed
 J. Ye in J. Ye in 21st International Conference on Machine Learning (2004)21st International Conference on Machine Learning (2004)
 D. del-Castillo D. del-Castillo NegreteNegrete, D. Spong, E. , D. Spong, E. DD’’AzevedoAzevedo, S. , S. HirshmanHirshman,,

““Compression of MHD Simulation Data Using SVD,Compression of MHD Simulation Data Using SVD,”” in preparation in preparation
 Iterative algorithm for minimizing Iterative algorithm for minimizing Frobenius Frobenius normnorm  betweenbetween

3D data and GLRA matrix form:3D data and GLRA matrix form:

 Analogous to 2D SVD (Analogous to 2D SVD (NNkk  = 1 limit), but iteration required and = 1 limit), but iteration required and DDkk
matrices are not diagonalmatrices are not diagonal

k=1
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SVD fits of M3D dataset reproduce more exact fits for
rank = 10 - 20 -> compression ratios of 35 - 100: R-Z space



SVD fits of M3D dataset reproduce more exact fits for
rank = 10 - 20 -> compression ratios of 35 - 100: s-θ space



Significant compressions can be achieved
while retaining all significant data features
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Significant compressions can be achieved
while retaining all significant data features
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Neoclassical Closure Relations



Our goal is to couple kinetic transport effects
with an MHD model - important for long
collisional path length plasmas such as ITER
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 Closure relations: enter through the momentum balanceClosure relations: enter through the momentum balance
equation and Ohmequation and Ohm’’s law:s law:

•• Moments hierarchy closed byMoments hierarchy closed by  Π Π = = function of function of n, Tn, T,,  VV, , BB, , EE
•• Requires solution of Requires solution of Boltzmann Boltzmann equation: f = f(equation: f = f(xx,,vv,t),t)
•• High dimensionality: 3 coordinate +High dimensionality: 3 coordinate +  2 velocity2 velocity  + time+ time



DELTA5D equations were converted from magnetic
to cylindrical coordinates
Uses 3D cubic B-spline fit to data from VMEC
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Coulomb collision operator for collisions of
test particles (species a) with a background
plasma (species b):
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Monte Carlo (Monte Carlo (LangevinLangevin) Equivalent of) Equivalent of
the Fokker-Planck Operatorthe Fokker-Planck Operator
[A. Boozer, G. Kuo-Petravic, Phys. Fl. 24 (1981)]
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Local Monte-Carlo equivalent Local Monte-Carlo equivalent quasilinearquasilinear
ICRF operator (developed by J. ICRF operator (developed by J. CarlssonCarlsson))

 

E
+
= E

!
+ µE

+" # EE $+
= $!

+ µ$
+" # $$

" = a zero ! mean, unit ! var iance random number (i.e., µ"
= 0 and #"

= 1)

# EE
= 2m

2
v%
2&v

0
# $$

= 2
k
||

'
!
v
||

v
2

(
)*

+
,-
2
v%
3&v

0

v
2

µE
= 2 1!

k
||
v
||

'
(
)*

+
,-
mv%&v0 µ$

= 2 1!
k
||
v
||

'
(
)*

+
,-
!
v%
2

v
2

.

/
0

1

2
3
k
||

'
!
v
||

v
2

(
)*

+
,-
+
v
||

v
2

v%
2

v
2

4
5
67

8
9
:7

v%&v0
v

where

&v
0
=
1

v%

eZ

2m
E+Jn!1(k%;) + E!Jn+1(k%;)

(
)*

+
,-
2
2<
n !=

as !=> 0

2<
n !=

> 2< 2 2

n !!=

2 /3

? Ai
2 !

n
2 !=2

4

2

n !!=

4 /3(

)
*

+

,
-



A new δf partitioning method is used that separates
not only the Maxwellian, but also E||, u||, q||, and
diamagnetic flow distortions of fM:
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From these δf components, either the
Sugama/Nishimura M*, N*, L* or DKES D11,
D13, D33 coeffiecients can be obtained
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New MHD viscosity-based closure relations
are more consistent with the MHD model
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DELTA5D
(Monte Carlo)

results

Viscosity coefficient
from DKES code

µ|| from DELTA5D:
 running time averages - single flux

surface electrons

µ|| benchmark with DKES

* DKES: Drift Kinetic Equation Solver

DELTA5D
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Viscosities show convergence with
increasing number of particles

(single flux surface)
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A model perturbed field has been added to mock up
tearing modes: B = BVMEC + ∇×(αBVMEC):
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Magnetic perturbations increase viscosity
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Particle to MHD coupling
 Data compressionData compression

 ImprovedImproved  gather operationsgather operations
 Particles discreteness smoothingParticles discreteness smoothing

 Systematic method for removing high frequencySystematic method for removing high frequency
noisenoise



Raw particle
Monte Carlo  data

Rank-1 SVD
40x40 coarse grained 
Distribution function

Data representation
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SVD spectrum

SVD rank-one
eigenfunctions
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Kinetic closure relations will be further developed
and coupled with the MHD model:

 Closure relationsClosure relations
 Calculate using fields from M3D tearing modeCalculate using fields from M3D tearing mode

 Recent data from W. Park, G-Y. FuRecent data from W. Park, G-Y. Fu
 Study 2D/3D variation ofStudy 2D/3D variation of  stress tensorstress tensor
 Time-varying stress tensor - rotating islandTime-varying stress tensor - rotating island
 Accelerate slow collisional time evolution of viscosity coefficientsAccelerate slow collisional time evolution of viscosity coefficients

 Test pre-converged restartsTest pre-converged restarts
 Equation-free projective integration extrapolation methodsEquation-free projective integration extrapolation methods

 Green-Kubo molecular dynamics methods - direct viscosity calculationGreen-Kubo molecular dynamics methods - direct viscosity calculation
 DELTA5D/M3D couplingDELTA5D/M3D coupling

 Interface, numerical stability, dataInterface, numerical stability, data  compression, gather/scattercompression, gather/scatter

Nonlinear M3D 2/1 tearing mode



Summary

 SVD data compression methods developed for 3D dataSVD data compression methods developed for 3D data
 Typical M3D single Typical M3D single timestep timestep dataset compressed by factor of 35-dataset compressed by factor of 35-

100 while preserving main island features100 while preserving main island features
 Systematic, controllable noise reduction/smoothingSystematic, controllable noise reduction/smoothing
 Attractive for particle gather/scatter operationsAttractive for particle gather/scatter operations
 Should minimize cache pagingShould minimize cache paging

 Particle-basedParticle-based  closure methods developed forclosure methods developed for
neoclassical viscositiesneoclassical viscosities
 Extension of stellarator methodsExtension of stellarator methods  --  applicable to 3D fieldsapplicable to 3D fields
 Benchmarked for axisymmetric tokamaksBenchmarked for axisymmetric tokamaks    and tokamak + islandsand tokamak + islands
 Delta-f Delta-f method fixes plasma flows and calculates viscositiesmethod fixes plasma flows and calculates viscosities
 AvoidsAvoids  redundant incorporation of MHD flows into particleredundant incorporation of MHD flows into particle

populationpopulation


